当前位置:八五教程网教学知识数学学习数学学习数学游戏字母数学游戏» 正文
  1. 字母数学游戏

  2. [11-19 20:12:20]   来源:http://www.85jc.com  数学游戏   阅读:8569

概要:在下面这个加法算式中,每个字母代表0~9的一个数字,而且不同的字母代表不同的数字。ABCDEF+GH————III请问缺了0~9中的哪一个数字?(提示:I必定代表哪个数字?)答案下一页答 案由于每一列都是四个不同的数字相加,所以一列数字加起来得到的和最大为9+8+7+6,即30。由于I不能等于0,所以右列向左列的进位不能大于2。由于向左列的进位不能大于2,所以I(作为和的首位数)不能等于3。于是I必定等于1或2。如果I等于1,则右列数字之和必定是11或21,而左列数字之和相应为10或9。于是,(B+D+F+H)+(A+C+E+G)+I=10+10+1=22,或者(B+D+F+H)+(A+C+E+G)+I=21+9+1=31。但是,从1到9到这十个数字之和是45,而这十个数字之和与上述两个式子中九个数字之和的差都大于9。这种情况是不可能的。因此I必定等于2。既然I等于2,那么右列数字之和必定是12或22,而左列数字之和相应为21或20。于是,(B+D+F+H)+(A+C+E+G)+

字母数学游戏,标签:数学游戏大全,http://www.85jc.com

在下面这个加法算式中,每个字母代表0~9的一个数字,而且不同的字母代表不同的数字。

AB

CD

EF

+GH

————

III

请问缺了0~9中的哪一个数字?

(提示:I必定代表哪个数字?)
答案下一页


答 案

由于每一列都是四个不同的数字相加,所以一列数字加起来得到的

和最大为9+8+7+6,即30。由于I不能等于0,所以右列向左列的进位不能大于2。由于向左列的进位不能大于2,所以I(作为和的首位数)不能等于3。于是I必定等于1或2。

如果I等于1,则右列数字之和必定是11或21,而左列数字之和相应为10或9。于是,

(B+D+F+H)+(A+C+E+G)+I=10+10+1=22,

或者

(B+D+F+H)+(A+C+E+G)+I=21+9+1=31。

但是,从1到9到这十个数字之和是45,而这十个数字之和与上述两个式子中九个数字之和的差都大于9。这种情况是不可能的。因此I必定等于2。

既然I等于2,那么右列数字之和必定是12或22,而左列数字之和相应为21或20。于是,

(B+D+F+H)+(A+C+E+G)+I=12+21+2=35,

或者

(B+D+F+H)+(A+C+E+G)+I=22+20+2=45。

这里第一种选择不成立,因为那十个数字之和与式子中九个数字之和的差大于9。因此缺失的数字必定是1。

至少存在一种这样的加法式子,这可以证明如下:按惯例,两位数的首位数字不能是0,所以0只能出现于右列。于是右列其他三个数字之和为22。这样,右列的四个数字只有两种可能:0、5、8、9(左列数字相应为3、4、6、7),或0、6、7、9(左列数字相应为3、4、5、8)。显然,这样的加法式子有很多。



Tag:数学游戏数学游戏大全数学学习 - 数学学习 - 数学游戏

上一篇:字母数学游戏:3个A
《字母数学游戏》相关文章
留言板
取消 发布留言