当前位置:八五教程网教学知识数学学习数学学习数学公式积化和差公式» 正文
  1. 积化和差公式

  2. [11-19 20:39:10]   来源:http://www.85jc.com  数学公式   阅读:8665

概要:积化和差,指初等数学三角函数部分的一组恒等式。公式sinαsinβ=-[cos(α+β)-cos(α-β)]/2【注意右式前的负号】cosαcosβ=[cos(α+β)+cos(α-β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2cosαsinβ=[sin(α+β)-sin(α-β)]/2证明法1积化和差恒等式可以通过展开角的和差恒等式的右手端来证明。即只需要把等式右边用两角和差公式拆开就能证明:sinαsinβ=-1/2[-2sinαsinβ]=-1/2[(cosαcosβ-sinαsinβ)-(cosαcosβ+sinαs

积化和差公式,标签:小学数学公式大全,http://www.85jc.com
积化和差,指初等数学三角函数部分的一组恒等式。
公式

sinαsinβ=-[cos(α+β)-cos(α-β)]/2【注意右式前的负号】
cosαcosβ=[cos(α+β)+cos(α-β)]/2
sinαcosβ=[sin(α+β)+sin(α-β)]/2
cosαsinβ=[sin(α+β)-sin(α-β)]/2

证明

法1
积化和差恒等式可以通过展开角的和差恒等式的右手端来证明。
即只需要把等式右边用两角和差公式拆开就能证明:
sinαsinβ=-1/2[-2sinαsinβ]
=-1/2[(cosαcosβ-sinαsinβ)-(cosαcosβ+sinαsinβ)]
=-1/2[cos(α+β)-cos(α-β)]
其他的3个式子也是相同的证明方法。
(该证明法逆向推导可用于和差化积的计算,参见和差化积)
法2
根据欧拉公式,e^ix=cosx+isinx
令x=a+b
得e ^I(a+b)=e^ia*e^ib=(cosa+isina)(cosb+isinb)=cosacosb-sinasinb+i(sinacosb+sinbcosa)=cos(a+b)+isin(a+b)
所以cos(a+b)=cosacosb-sinasinb
sin(a+b)=sinacosb+sinbcosa

记忆方法

积化和差公式的形式比较复杂,记忆中以下几个方面是难点,下面指出了特点各自的简单记忆方法。
【1】这一点最简单的记忆方法是通过三角函数的值域判断。sin和cos的值域都是[-1,1],其和差的值域应该 是
[-2,2],而积的值域确是[-1,1],因此除以2是必须的。
也可以通过其证明来记忆,因为展开两角和差公式后,未抵消的两项相同而造成有系数2,如:
cos(α-β)-cos(α+β)
=(cosαcosβ+sinαsinβ)-(cosαcosβ-sinαsinβ)
=2sinαsinβ
故最后需要除以2。


Tag:数学公式小学数学公式大全数学学习 - 数学学习 - 数学公式

上一篇:球的表面积计算公式
《积化和差公式》相关文章
留言板
取消 发布留言